About CHMER

Established in 1975, CHMER is the largest EDM manufacturer in Taiwan, exporting over 55 countries. Product lines include Die Sinking EDMs, Wire Cut EDMs, Small Hole Drilling EDMs, High Speed Milling Machines, and Laser Machines. A comprehensive technical support completes our services.

The contents of this catalogue includes but not limited to all words, graphs, etc. belong to the copyright of CHMER. Without prior written consent, it is prohibited from reproduction, extraction, reprint, change, distribution or use in any way. Specifications and equipment are subject to the actual machines. CHMER owns the right of changing contents and designs without prior notice.

CHING HUNG MACHINERY & ELECTRIC INDUSTRIAL CO., LTD.

No.3, JingKe 1st Rd., Nantun Dist., Taichung City 408, Taiwan TEL / 886-4-2350-9188 FAX/ 886-4-2350-0977

http://www.chmer.com

Wire Cut-Die Sinking-Drilling-High Speed Milling-Laser Machine

WRV000Ev02

Linear Motor Drive Wire Cut EDM

GX+ SERIES

GX⁺ series evolutionary transformation

GX⁺ Series provide the newest technologies with CHMER produced Linear Motors, Power & Servo stabilizer, Energy Saving, New energy-saving Generation AWT and W5i Controller, Inverter Type Water Chiller.

New energy-saving Generation AWT

Nearly 100% Reliable Threading, open air and in the kerf.

HP-AVR

Power & Servo stabilizer. Less Wire breaks & High Efficiency repeat cutting.

GX530L[↑]

New i8+ Power Supply

With built-in voltage stabilizer which enables the machining stability, the new i8+ power supply improves 15% cutting speed and saves 20% energy, compared with previous power supply.

Newest W5i Control

CHMER writes their own software allowing customers upgrade at a later date.

Inverter Type Water Chiller

Equipped with the newest inverter water chiller the temperature variation inside the chamber within ±0.5°C for precise machining and greatly reduces heat emission meanwhile save energy consumption of air-conditioner by 45%.

Linear Motor

CHMER built Linear Motor Precision with High resolution drivers and glass scales on X & Y axis.

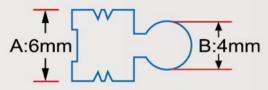
3600

GX640L⁺

CHMER®

/// Benefit of Linear Motor

In-House Linear Motor


Linear Motor results a wear-free and no conversion motion to have a perfect positioning. GX* series equips X/Y In-House Linear Motor to obtain many advances features that the regular Wire Cut could not have, such as smoothly direct movement, high responsiveness, perfectly accurate positioning as well as vibration, maintenance and backlash free. So it guarantees an outstanding performance and long life span.

Reduce Profile Error (Improving Linear & Circular Cross-section)

Work Conditions:

Brass Wire :Ø0.20mm Work-Piece = SKD11
Harden Steel Thickness =50mm
Cutting Pass = 1+2 Skims

《Cutting Shape》

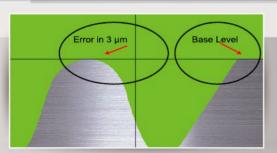


	Linear	Motor	Ball Screw			
	A section	B section	A section	B section		
Up	5.999	3.999	5.999	3.998		
Middle	6.000	3.998	5.998	3.995		
Bottom	6.000	4.000	6.000	3.999		
Error	-0.001	-0.002	-0.002	-0.005		

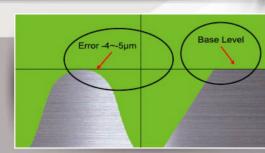
Surface Roughness Enhancement

With Funtion: \lceil AC μ Super-Finish Circuit \rfloor Cutting Result: Improved cutting speed and surface finish with over 3 skims cuts. Linear motor with virtually no backlash provides for even metal removal all around the work-piece , especially when skim cut is <0.0001"(0.25 microns)

Brass Wire=0.20mm/BS Work-piece=SKD11 Cutting Pass=1+4 Skims T=25 MM Ra=0.25µm



Linear Motor	Ball-Screw	
1+4Skims=0.23~0.25μm/Ra	1+4Skims=0.28µm/Ra	

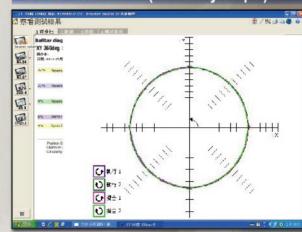

Improvement on "Corner" by Linear Motor

Work Conditions:

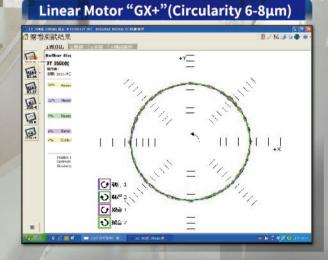
Brass Wire :Ø0.20mm Work-Piece = SKD11 Cutting Pass = 1+2 Skims Shape Corner =30° Harden Steel Thickness =50mm Ra = 0.58 Radius (R)=0.20mm

Linear Motor (Radius Error : 3µm) Optical Projector Scaling: 120X

Ball-Screw (Radius Error: 4~5µm)
Optical Projector Scaling: 120X


The Roundness Of Linear Motor After 10 Year Use

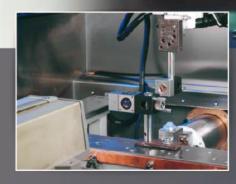
New hardware with Linear Motor & Glass Scale (0.5 μ m Resolution) are the need match $^{\circ}$ Use Laser Interpolation & BALL-BAR Circularity Test to prove the strictly Q.C. control at CHMER, the result was satisfactory.


Ball Bar Test

Right after installation

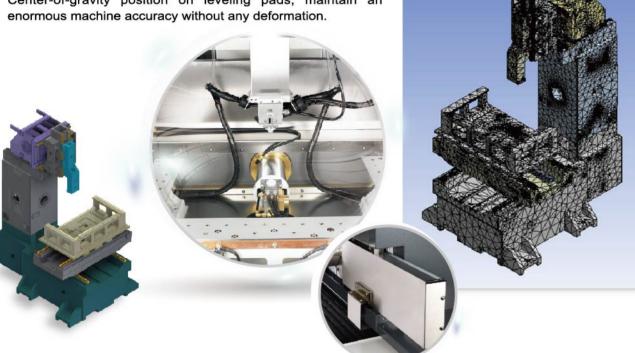
Linear Motor "GX+" (Circularity 6~8µm)

After 10 years of use



Linear Motor

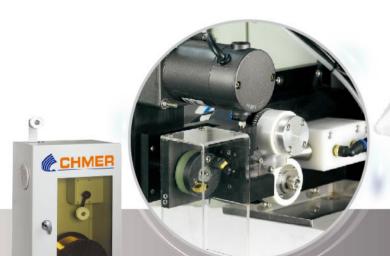
- Linear Scale


Ball-Bar Test

Laser Alignment

//// High Rigidity and Thermal Balanced Structure

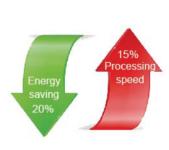
To meet machining demands, The machine has been designed from the base frame through 3D simulation to optimize stability and extend the machine life. .


Center-of-gravity position on leveling pads, maintain an

//// Hardware Functions

In-house Rotary B-AXIS

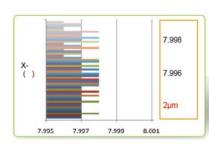
6th Axis continuous cut or indexing (optional) with in-house submergable rotary B-Axis for turns and burns.

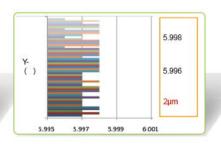

- Wire chopper

$i8^+$ Power Supply System

The new i8+ power supply system increases the cutting speed by 15%, compared with the last generation, saves energy by 20%, and enhances machining stability by built-in intelligent voltage stabilizer.

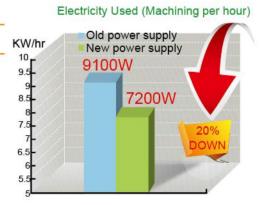
- Machining speed increases by 15%
- Wire breakage prevention function
- O Decrease of heat generated
- O Increase of circuit reliability




HP-IVC Intelligent Stable Power Supply

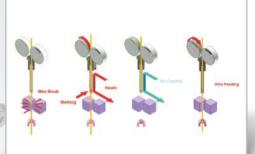
The newly developed IVC high frequency switching power supply can stabilize and regulate voltage, keep constant temperature, and separate the workload and power supply to ensure the safety of the system.

With the latest technology, it can effectively convert unstable power input to stable power for internal use. In addition, it can intelligently supply higher power for high energy consumption machining and maintain stable power supply for high precision machining.


Continuous machining 50 pieces of punch

Machining size: 8x6mm T=30mm

Next Generation Renewable Energy Technology

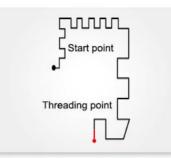

The new i8+ power supply has the latest energy saving circuit which can convert the counter-electromotive force to power supply source for reuse. Apart from renewable energy, it eliminates the conventional heat sink circuit which generates heat and saves energy and reduces carbon emissions.

CHMER The Newest Generation AWT

//// Unattended over night and over weekend Auto Threading

Reliable automatic wire threading system control

- · Capable of threading wire under water and on location. No need to return back to start point, drain the work-tank and then dry-run to wire break point.
- · Simply design to make maintenance easy and cost less.
- · Can thread wire at stepped work-piece, when the upper head cannot reach the work-piece.



The Newest Generation AWT

『EC』 Tension Control Technology, ensures a constant tension to obtain superb threading rate, less than 10 seconds.

Patented in-house Auto Wire Threading (AWT) can thread 0.07mm Dia. Wire. Beside more simple and concise AWT mechanism can effectively reduce the building cost, failure rate so as to the frequency of maintenance.

///All new servo system feedback module of AWT

Wire Rethread at break

Immediately perform rethreading when wire breaks.

3999 Sets Memory Holes:

Record the latest 3999 sets if processing holes, allow user to check the failure and then restart.

Visual parameter setting:

Parameters can be set for different wire diameters and

100 sets NC Program Memory:

Record the latest 100 sets NC programs, let the operator knows the processing whether be finished based on the board information.

Monitoring Screen:

Record every step of AWT process, monitors and adjusts to enhance the stability.

- Multi-cavity threading

- AWT Device

CHMER BUILT CNC CONTROLLER

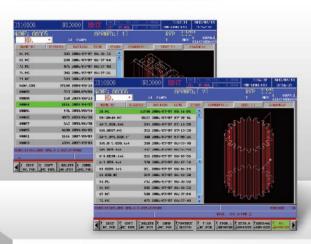
/// Features of W5I controller

- Up to 7-axis control, supporting on-line measuring system, capable of equipping with Windows or Linus embedded system.
- All-in-one fan-less design, eliminating complicated wiring. reducing more than 65% of volume and weight and 50% of energy consumption.
- Supporting RS422/ RS485 data transfer, enhancing anti-interference ability, and increasing serial BPS speed.
- Dual core CPU, 1 GB RAM, 1GHz calculating speed, 1/3 calculating time compared to the previous one.
- 1G high storage space, supporting touch screen and hot swapping USB.
- Optional i-connected system can remotely monitor machine condition through personal hand held devices.

• USB and RS485 connector is convenient to upload and download files.

Friendly User Interface and Operate Console.

Remote Monitoring


■ Team-ViewerTM (A Pay Software, not included)

 Remote Monitoring Function Install Chmer exclusive Remote Monitoring Software and authorized "Team-Viewer" for knowing real-time machine status.

//// Software Functions

User-Friendly File Management

EDM Technology Database

10106	li i	10000	DATA	W 75 C	11. 1.10	-33-10		HUNDE HUNDE			
or cast-repa	TATE:	SYST	TEM SPA	10 10 10 10	Ver -2.7						
100	101	142	193	84 19		197	120	100			
6-90) 4	Cate III or	-	-	-		A 200	A NOTE OF	481	8 NC/	12/12	
ciii i	21101	C6	91	0000	ALA IN	77.4%	£ 250 to	-189-11981 9			
- 6				SPARE	DATA BE	SE(Ver	:2.7)				
F 7	90	NAC COLUMN	in as as in	EN. 19	mori	OR-MINE	3	2002	1170	100	
4	ccon	50.1	-		-		i main	and the same of		4185152	28 C /82/
E 7 10	6697	2011	311010		N10000	1000	12 77	45.	1 1010 -10	1991 911	DOME
20	een:	50.1				SPA	K DATA	EASE			
12	66601	0013	VIKE	DIA	COAR	IK BASE		REG.DAT.	013		CHEP SHIP
10	55.04.	2071	wither:	9,250			MILE	Kind. DAL	.DAS	100	A 944
-	66605:	8001	MATER			1 0.05	2 one	o eno	4 6173	5 0.63	4 000
61	ecer.	80.1	SK		100	1D3	2,98	394	440	200	022
711	6000	EO:1	THICK		cv.	4-39	3-354	3-45\	8-78V	1:70/	8-10)
0.91	ecos:	800	1111/08	50,000	07 184	101	100	982	285	325	Into 2
	0.00	30:1	CINDI		cn		- 2	2	- 3	3.0	3.5
n Laure W	-	80:1		NCH S.F	EN:	- 4	1	1	21	10	- 1
M. CANNE . TO	CE 121	30:1	BL.O		ENV Filt	- 1	- 44	- 15		- 18	10
	6613	EOLI	HJ.UE	SIEXIST		14	-6	- 6	70	- 12	19
COST & BE		1.02	Sec.	PHEMIPI	1 12	- 1	16	:6	30	15	. 9
-	00.15	2071	KIN	SC PW	17:	-:	3.5	- 3	-	15	- 2
	HURS-IN	SELECT I	ENGL	atten Call	Sec.		- 6	4	- 0		- 2
					Pr	0.00	9.66	0.00	8,00	6.10	(-0)
		ALL ALL			IAC	NAME OF TAXABLE PARTY.	-	-		9,050	0.010
	E 998	at g m	A Company		ors	0.2:1	D.:40	0.:21	1.000	9.600	100.3
			PRISO TO	HEF TAX 10	IN BURNES	RE NAME	SHIER PLAN				TOTOTAL
								11.05	300:0-138		

3D Graphic Simulation + NC path Info.

E STEP E MOSET : T.H. E SIH. E MOSET | STEP | STEP

NC Register

t BEAR T STARTH I E SIR. SIB. E SIR. SIB I START E FIGURE SIB.

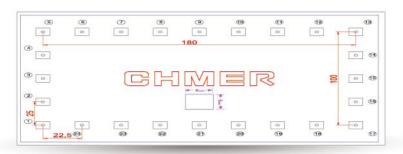
Graphic Manual Function

110106	N13000 HW	-1 10 TV TV TV	4:21:44 -ar-r on-ses	2H2/93/11
NACH.COOKD		9,000		F.RESIST.
*X	19.85C	2 A		(m)or, (r
*Y	131,113			GP TO SE
				173.07
×11	30.360	1 1 1 1 1 1 1 1	مرد که	0.00
- 0 H		STEEL STREET	- 7	1901 E
₩V	29.920	7	- Name	DUI E-450
†3	85.711	n	n ,	DN: ARC
LOCAL OCCED.	DOM: NO	N-APTS APAIR	CLOSED CO. CO.	tore 11
*5 -300.763 *7 69,389	ATRIE PLL	0.1723	SMILL PER.	NH: 2
12 200.000	WHE CHI.	HOUR SIRRE	W 983, 129	N77 11
-0 9.900	UITE TENSING	8.2723		97 38 F3: 45
7 E5.7E	2		SPECIF PT1.	117: 7
(R: 0.000)	HACE DIST.		-Y 50.00	MT: 7
W. 0.000	2H BHH			Mail 6
HE 0 AND				PH: 1
A STATE OF THE PARTY.	E P.H. SEEDS, S.W. CO.	PK 1		SECONDELL 4
			ed accomes	

MACH. DO		31.	850 113) = 1	56.100 6.190 50.366 29.458 65.741	70K.f	7L = 201.57% +6.979 -27.325 >= 444 +62.74.	1 4	Reenstr.	
₩\ 	106		360	100	1	77 455	73 -	I HE	(115125 (115125 (115125	SHEARS:
HC	WCH.C		30 30 30	850 113 600 360 980 741	7 64 m	200 200 200 200 200 200 200 200 200 200	E00at e1 e2 e3 e3 e3 e3 e3 e3 e3 e4 e3 e4 e3 e4 e4 e4 e5 e5 e6 e6 e6 e6 e7 e6 e7 e7 e7 e7 e7 e7 e7 e7 e7 e7 e7 e7 e7	00071. 341.540 91.260 191.191 1.000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	PERFORMANCE ON OF THE OWNER ON OWNER
	ISF. or T	201. 200. 200. 200. 200. 200.	631 0 *6 -7 -7 -7 -7 -7 -7		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	6.000 65.741 00CMD. -25.6.2 101.005 13.162 -22.071 1 AM	6253 93 93 93 93 93 93 93 93	8.6% 05.545 CONT. -15.60 161.60 171.862 -21.673		IN IT
	s trem		ANS.1	t na to le	BECT OF		-	FIRE I		P D.

System Device Management+ Optimum system parameter

D110106 B	12000 151.5	10 77.46	D. 14. F. 500	4016.59	SHOWE'S	
	SYSTEM	DEVICE IN	ORWATION			
DEVENT BASE	THE CHIPT	LIFE COME	LIBROSET DRITE.	ante sore onte	Water Caretal	
DEDGESTAGE PLACE	6 - 50 / sa	20 W W	2005-92-33 23-97-33			1115 2012/00/1
TARRESTONES GIRCH	1 28 57 1 37a	268198188	2005/89754			D HTS 12: NEXA
ENTALLING DV ACHEST PETER	1-028-07 E-300	568:8F:RR	3895/99/31 41-95/38			rit
TENNING NY YEAR WIRE	9.37c	568:00:00	2983/89/34 21:395:55			DIESEC
CONNECTION PROFE	55-38-59 6-20x	568:06:38	2007/15/22 21:57:16			2.7
DOM RESERV	9-00-08	72:00:00	2984/85/82 27/28/54			E-VIEN
SE IDSTEE	81.00.18 100.51	000	0000/00/2/ 00:00:57			RIV
DOES THAT	88:29:42 43:48:	J94-90-00	7885/992/54 21:456-05			EV SELL
SINE	18%.4	3. 2963G ; 3161/8 .225mm	2005/89754 E; -05:01			OBACKS BATH
90.0K/ 50.0K13	F 0.0	C/22.0°130	927.500 0.00 H		SF +	197:58022
me to 1 to time	-		West Street	and the second	112000 11	P23001204541
-		-	MAG TEC	H-ERE S		ECL. WHIT
T THE P STATES	1 X 1	THE STREET			THE S	


//// High Accurate Cutting

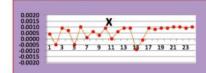
±4µm

Workpiece material: SKD11 Workpiece thickness =20.00mm

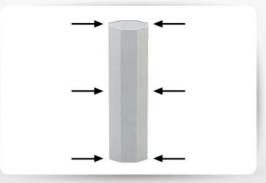
Number of cuts: 4 times

Environment Condition = Temperature controlled room at 23°C~24°C

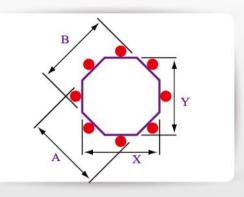
			curacy mm				Cutting	shape mm	
	Coor	rdinate	Measu	red Error		Job	Size	Measur	ed Error
NO	X	Y	X	Y	NO	Х	Y	X	Y
1	0	0	0.0000	0.0000	1	8	8	0.0004	0.000
2	0	25	-0.0006	-0.0008	2	8	8	-0.0005	0.000
3	0	50	-0.0012	-0.0016	3	8	8	0.0009	0.001
4	0	75	-0.0013	-0.0010	4	8	8	0.0007	0.000
5	0	100	-0.0006	-0.0026	5	8	8	-0.0005	0.000
6	22.5	100	0.0010	-0.0020	6	8	8	0.0010	0.001
7	45	100	0.0013	-0.0031	7	8	8	0.0001	0.000
8	67.5	100	0.0013	-0.0021	8	8	8	0.0006	0.000
9	90	100	0.0005	-0.0021	9	8	8	0.0003	0.000
10	112.5	100	0.0012	-0.0014	10	8	8	0.0009	0.000
11	135	100	0.0012	-0.0018	11	8	8	0.0000	0.000
12	157.5	100	0.0015	-0.0021	12	8	8	0.0006	0.000
13	180	100	0.0036	-0.0033	13	8	8	0.0009	0.000
14	180	75	0.0025	-0.0013	14	8	8	0.0009	0.000
15	180	50	0.0014	-0.0007	15	8	8	-0.0009	0.000
16	180	25	0.0015	-0.0005	16	8	8	-0.0001	0.000
17	180	0	0.0027	0	17	8	8	0.0009	0.000
18	157.5	0	0.0018	0.0011	18	8	8	0.0008	0.000
19	135	0	0.0005	0.0002	19	8	8	0.0009	0.001
20	112.5	0	0.0003	0.0001	20	8	8	0.0009	0.001
21	90	0	0.0014	0.0013	21	8	8	0.0010	0.000
22	67.5	0	0.0012	0.0015	22	8	8	0.0010	0.000
23	45	0	0.0002	-0.0004	23	8	8	0.0009	0.000
24	22.5	0	0.0001	0.0006	24	8	8	0.0010	0.001
	Min. error	mm	-0.0013	-0.0033	Mi	n. error r	nm	-0.0009	0.000
	Max. error	mm	0.0036	0.0015	Ma	x, error r	nm	0.0010	0.001


A.Real Room Temperature : 23.5°C ±0.5°C B.Water Temperature : 22.5°C ±0.5°C C.Real m/c body Temperature : 23.5°C ±0.5°C


Pitch Accuracy mn


0.0030	Ypitch
0.0010 -	
-0.0010	1 3 5 7 9 11 13 15 17 19 21 23
-0.0020 -0.0030	

Cutting shape mm


//// Straightness Accuracy

Straightness

Workpiece: SKD-11 Thickness: 30 mm Wire diameter: Ø0.2mm No. of cut: 3 cuts

Accuracy: 2 µm

Measurement figure

Marked red color means the measured points.

Accuracy	X	Α	Y	В	Error
Up	9.999	9.999	9.999	9.999	0μ
Mid.	9.997	9.999	9.999	9.999	2μ
Dn.	9.999	9.999	9.999	9.999	0μ
Error	0.002	0	0	0	•

Sample Illustration

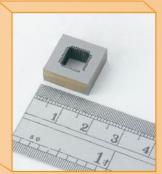
Job Material: SKD-11 Job Thickness: 30 mm Wire diameter: Ø0.20 mm Number Of Cut: 1+ 2 Skims Work Hour: 1 Hour 10 Mins Accuracy: 3µm Surface Roughness: Ra 0.55~0.58µm

Job Material: SKD-11 Job Thickness: 17 mm Wire diameter: Ø0.15 mm Number Of Cut: 1+ 2 Skims Work Hour: 1 Hour 50 Mins Accuracy: ±3µm Surface Roughness: Ra 0.55~0.58µm


Job Material: SKD-11 Job Thickness[Punch]: 50mm Job Thickness[Die]: 20mm Number Of Cut: 1+2 Skims Surface Roughness: Ra 0.58~0.63µm

Taper Cut Job Material: SKD-11 Job Thickness: 11.45 mm Wire diameter: Ø0.20 mm Number Of Cut: 1 Cut Work Hour: 1 Hour 30 Mins Taper Angle: 21°

Job Material: SKD-11 Job Thickness: 25 mm Wire diameter: Ø0.20 mm Number Of Cut: 1+ 2 Skims Work Hour: 1 Hour 50 Mins Accuracy: ±3µm Surface Roughness: Ra 0.55~0.58µm



Job Material: SKD-11 Job Thickness [Punch]: 50 mm Job Thickness [Die]: 30 mm Wire diameter: Ø0.20 mm Number Of Cut: 1+ 2 Skims Work Hour: 4 Hours 00 Mins Accuracy: 3µm Surface Roughness: Ra 0.58~0.63µm

PCD formed milling cutters

Job Material: PCD Job Thickness: 2.5 mm Wire diameter: Ø0.20 mm Feed rate: 2.0 mm/min

Dia.Ø0.1mm wire processing

Purpose: For the precision molds of IC industries etc. Job Material: Carbide Job Thickness: 5 mm Wire diameter: Ø0.10 mm Number Of Cut: 1+ 2 Skims Accuracy: 3µm Surface Roughness: Ra 0.40µm (AC-µ circuit, opt)

Specification

MODEL	GX360L+	GX430L+	GX530L+	GX640L+	
Axis Travel (XxYxZ mm)	360x250x220 (mm)	400x300x220 (mm)	500x300x220 (mm)	600x400x300 (mm)	
Axis Travel (UxV mm)	60x60 (mm)	60x60 (mm)	60x60 (mm)	100x100 (mm)	
Max. Size of Workpiece (mm)	W725 x D560 x H215	W725 x D600 x H215	W825 x D600 x H215	W910 x D700 x H295	
Max. Weight of Workpiece (kg)	300 Kg	350 Kg	500 Kg	600 Kg	
XY Feed Rate		Max. 1800 (r	nm/min)		
Axis Drive System	X, Y	170	, Z axis by AC Servo Motor		
Wire Diameter Range (Standard)		Ф0.15-0.3 (Ф0.25) (Not			
Max. Wire Feed Rate Wire Tension		300 mi			
Taper Angle		±14.5°/80 (wide-a DA+DB=15	ngled nozzle,	±21°/100(wide-anglednozzle, DA+DB=15mm)	
Machine Weight kg	2500	2600	3195	3800	
Working Fluid Supply Unit					
Tank Capacity	590L	650L	650L	760L	
Filter Element	Paper	Paper	Paper	Paper	
Ion Exchange Resins	14L	14L	14L	14L	
Conductivity Control	Auto	Auto	Auto	Auto	
Fluid Temperature Control	Auto	Auto	Auto	Auto	
Power Supply Unit					
Circuit System		Power MOSF	ET Transistor		
Max. Output Current		15	iA .		
IP Slelect		2	8		
Off Time System		22	18		
CNC Unit					
Date Input		Keyboard,	USB, LAN		
Display		15-Inch	ı Color		
Control System		32bit, 1-CPU, X	&Y Closed Loop		
Control Axis		X, Y, U, V, Z (5 Axis)	, 6th axis optional		
Setting Unit		0.001	. mm		
Max. Command Value		±9999.9	999 mm		
Interpolation		Linear/0	Circular		
Command System		ABS/	INC		
Machining Feed Control		Servo/Co	nst. Feed		
Scaling		0.001-99	999.999		
Machining EDM Condition Memort		1000-	9999		
Total AC Power Input		3 Phase 220	±5%/11KVA		

Standard/Optional Accessories

Standard Option	10	Not Availabl	0
-----------------	----	--------------	---

ITEM	SPECIFICATION	AMOUNT	GX360L+	GX430L+	GX530L+	GX640L+
Paper Filter		2 pcs	•	•	•	•
Upper/Lower Diamond Guides	0.26mm	2 pcs	•	•	•	•
Upper/Lower Flushing Nozzles		2 pcs	•	•	•	•
Energizing Carbides		2 pcs	•	•	•	•
Diamond Guide Remove Jig		1 pcs	•	•	•	•
Brass Wire	0.25mm x 5kg	1 roll	•	•	•	•
Tools		1 set	•	•	•	•
Ion Exchange Resins	14L	1 set	•	•	•	•
Alignment Jig		1 set	•	•	•	•
AC Inverter Water Chiller	20000BTU	1 set	•	•	•	•
AC Power		1 set	•	•	•	•
USB Port		1 set	•	•	•	•
X&Y Axis Linear Motor	CHMER	1 set	•	•	•	•
X&Y Axis Glass Scale	0.5μm	1 set	•	•	•	•
Resuming Work function		1 set	•	•	•	•
Remote Monitoring function		1 set	•	•	•	•
Swivel TFT Panel		1 set	•	•	•	•
Auto Wire Threading Device		1 set	0	0	0	0
AC-μ Fine finishing		1 set	0	0		-
30 Kg jumbo wire feeder		1 set	0	0	0	0
Wire Chopper		1 set	0	0	0	0
0.1 mm wire device		1 set	0	0	0	0
Rotary B-axis (6th axis function)	CHMER	1 set	0	0	0	0

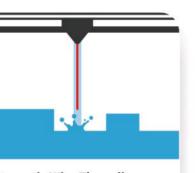
Options

Large Wire Spool

30 kg wire spool provides long time cutting for unmanned operation

The 6th Axis

Submerged type 6th axis can perform indexing and complicated curve machining


AC-μ Fine finish Circuit

1st cut: Ra 2.1 µm 2nd cut: Ra 1.9 µm 3rd cut : Ra 0.58 µm 4th cut: Ra 0.30 µm 5th cut : Ra 0.20 μm

CHMER Zinc Coated Wires

The CHMER Chorro 10 Zinc coated wire can make the cutting speed 30% higher

Automatic Wire Threading Assistant Device

Automatic Wire Chopper

Warranties

3 Year Warranty

Linear Motors

10 Year Guarantee

Positioning Accuracy

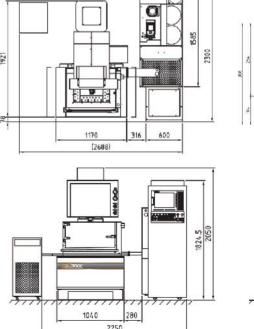
Environment Conditions:

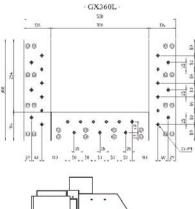
- 1. Optimum Room Temperature: 23±0.5°C Humidity: Below to 75% RH
- 2. Avoid being Floor Vibration.
- 3. Avoid being located against sunshine.
- 4. Avoid being located against heat-treatment or plating plant nearby.
- 5. Clean and low dust environment.

Space Requirement:

Take notice of the space for machine stoke to move during normal operation and daily maintenance.

Grounding:

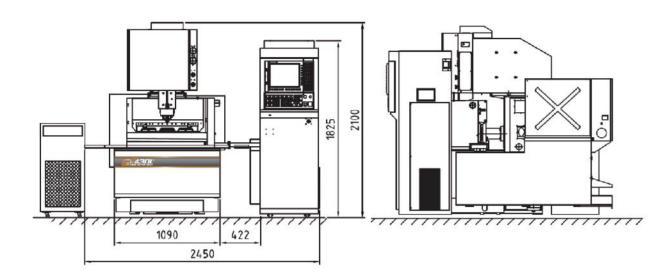

- 1. It's recommended to have an Earth Ground.
- 2. An independent ground is recommended.
- 3. The grounding cable should be 10 gage wire or larger.

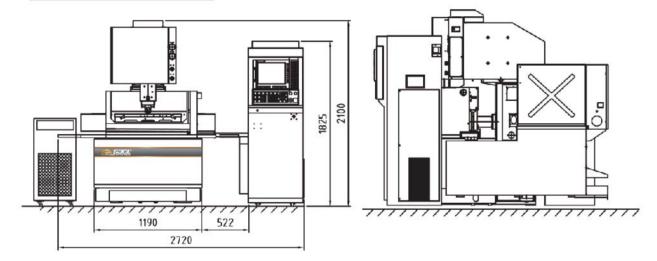

Demand of Air pressure:

1. Air pressure of 6 kg/cm²(95 PSI) for options of AWT and submerged machine is needed.

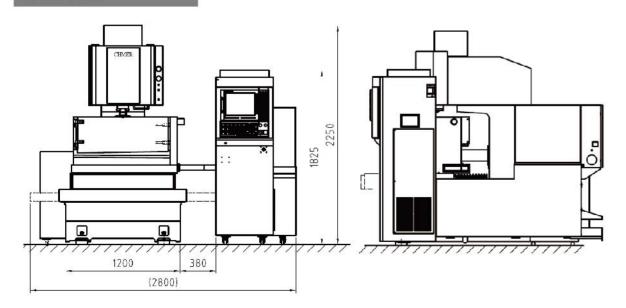
Machine Dimensions

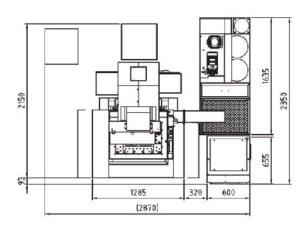
GX360L+

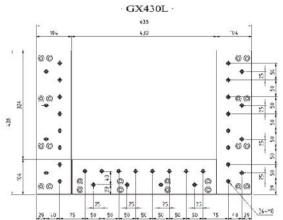


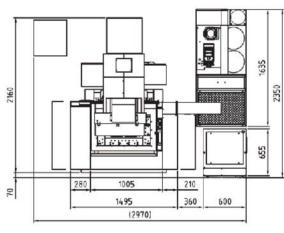


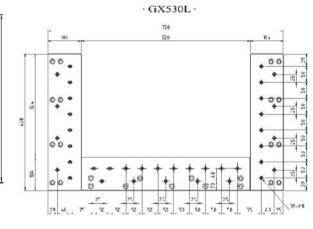
Machine Dimensions


GX430L+




GX530L+




GX640L+

