

Input power

AC220V ± 5V 3 Phase 50/60Hz ± 1Hz (15 kVA)

Environment conditions

- 1. Optimun room. temperature : 23 ± 0.5°C Humidity: below 75% RH.
- 2. Minimum floor vibration.
- 3. Avoid being located against sunshine.
- 4. Systems or set in a place that received directly sunshine.
- 5. Clean and low dust environment.

Space

Take notice of the space for machine stroke to move during normal operation and daily maintenance.

Grounding

- 1. It is recommended to have a grounding resistance of 10 Ω or less.
- 2. An independent ground is recommended.
- 3. The grounding cable should be 14mm².

Demand of air pressure

Air pressure of 6kg/cm² for options of AWT and submerged machine is needed.

POWER SUPPLY UNIT	
Circuit system	Power MOS Transistor
Max. outpot current	25A
IP select	10
Off time select	50

CNC UNIT	
Data Input	keyboard, RS-232C, usb port
Display	15-Inch Color
Control system	32bit, 1-CPU, Semi Closed Loop
	Software Servo System
Control axis	X, Y, U, V, Z (5 Axis)
Measurement resolution	0.001mm
Max. command value	± 9999.999mm
Movement measuring system	Linear / Circuler
Command System	Abs / INC
Machining feed control	Servo / Const. Feed
Scaling	0.001-9999.999
Machining EDM Condition Memory	1000-9999
T-1-1 AQ B1	3 Phase 220 10% / 11kVA
Total AC Power Input	12.5kVA is for RX1283 and larger models

New Generation AWT P

Nearly 100% Reliable Threading, open air and in the kerf.

HP-AVR

9

CHME

Power and Servo stabilizer. Less wire breaks and high efficiency repeat cutting.

New G7 Energy Saving Power Supply

Longer durability of electronic components: Latest G7 features lower temperature inside the power supply by utilizing advanced Cool MOSFET transistor to reduce circuit impedance by 40%(compared with G6).

Newest W5F Control

CHMER writes their own software allowing for customer upgrade at a later date.

→ G32F

① G32S

NEW GENERATION SERIES WIRE CUT EDM

Revolutionary and Innovated design to meet mostly demanding of precision mold makers. Integrated technology and visual appearance upgrade the users a better cutting experience and create high C/P value on this Universal Wire Cut EDM.

G 32F

Against the diversity processing on Automobile & Household appliances Industries demands. Based on expertise the mechanism design of developing a commercial value large travel EDM wire cut in apply.

The Best Solution for Molds of the Automobile and Household Appliances Industries Household Appliances

/// SAMPLE ILLUSTRATION

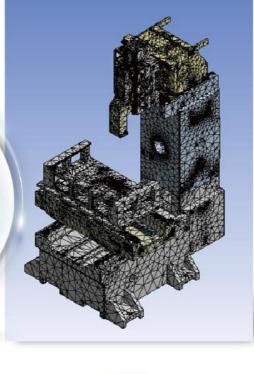
O Great Thickness Combined Cutting

Cutting times: 3 Workpiece material: SKD-11 Workpiece thickness: 100mm Wire diameter: 0.25mm

RX1283S ©

① RX1065S

//// High Rigidity and Thermal Balanced Structure


G Series – FEM Analysis & Optimize Mechanism Design

To meet all oriented cutting demands, the machine has been optimized design by 3D simulation and FEM analysis to obtain the stability and extend the machine life.

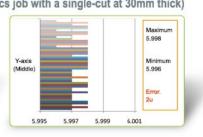
Center-Of-Gravity position on leveling pads, maintain an enormous machine accuracy without deformation.

Mechanical Features

//// 『G7』 Generator Power Control System

AC Electrolysis-Free Power

AC & DC switchable power supply. AC used for minimum cobalt depletion and best surface roughness in Carbides, also best cutting speed in PCD and PCBN materials. Also extend the life-Span of molds.


HP-AVR Cutting Voltage Stabilizer

Automatic/Smart voltage-stabilizing power supply.

By using the cutting-edge technology, the new power control system can effective transform the unstable energy into pure stabilized electricity. Through it, the smart logic of the power control can effectively to transform and supply the discharge power for a fast cutting feed.

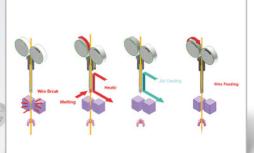
NES - Energy Saving Power Supply

With exclusively developed power saving techniques; the New Power Control system can transform the power applied in discharge process and recharge the electricity of the generator. This process can reduce the power consumption up to over 20% (compared with the previous models). Also, it reduces the heat emission problem. It fits the idea of energy saving and carbon emission reduction.

- Excellent thermal balance and rigid cast construction to ensure the best machining accuracy and durability. U-V axes, with linear guide way for accurate taper cutting.
- Using direct drive AC servo motors, high precision ball screws on linear guide ways with optional. 005mm resolution glass scale, assures precise positioning and fast response to cutting conditions.
- Stainless steel 3-sided worktable and brushed stainless work tank for long endurance and least maintenance.
- U-V axes with up to ±50mm travel for wide taper angles (± 21 degree). (Reach Condition: 100mm Z-axis height and DA+DB=15mm at least; a set of wide-angle diamond guides and nozzles are required.)

Professional Industrial High Speed Processor & Discharge Erosion control

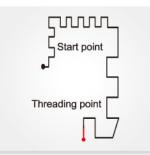
Embedded DOS OS system, reduce burden on processor, more stability of control system and better speed. The superior ASIC Chip, increases the response speed and feedback of cutting servo / current / voltage by real-time. DOS greatly improves CPU reliability while virtually eliminating CPU virus.


DOS also is instantly on; no booting time required. (Windows OS is available as an option)

CHMER The Newest Generation AWT

//// Unattended over night and over weekend Auto Threading

Reliable automatic wire threading system control


- · Capable of threading wire under water and on location. No need to return back to start point, drain the work-tank and then dry-run to wire break point.
- Simply design to make maintenance easy and cost less.
- Can thread wire at stepped work-piece, when the upper head cannot reach the work-piece.

The Newest Generation AWT

「EC」 Tension Control Technology, ensures a constant tension to obtain superb threading rate, less than 10 seconds. Patented in-house Auto Wire Threading(AWT) can thread 0.07mm Dia. wire. Beside more simple and concise AWT mechanism can effectively reduce the building cost, failure rate so as to the frequency of maitenance.

///All new servo system feedback module of AWT

Wire Rethread at break

Immediately perform rethreading when wire breaks.

110106	NI	0000 HE	н	181 10	F.466	HI I	-MI-COM.	013	15:58:1
PGR. COORD. #8 137, 462 #V 23, 723		START CHIS	H:	(0.1 (0.02)	2009/11/28 2009/11/28	on e	60.000	Ē,	TO ST
18 189.1899 +U 8.899 +U H.1899	£0000221			27,456 38,368 39,436			27,456 28,566 38,566 29,938		*#≎.≎ 173.0V
"B B.RRM HWCH.COORD.		START LITZE	THRUC	16230 J 70.000	BIBOS PT1306	THOUGH	871	2	0.0
+K 09,058 +Y 131,113 4E 100,000 +U 36,368 +U 29,508	(8011) (6000001	21:48:15 6 181 PN:00801 H:008001 D:008004	¥: #: #:	100,000 37,456 38,368 29,928	PRI DROGO N. DROGO DI DROGO	8 8 8	0.000 0.000 0.000 0.000		90: 8 00: 5-95A 70: ARR
*D 05.741 07-887.71HE 644-19-33 6:80-31	(8812) E0000223	START URSE 2009/11/20 21:40:42 1 181 FM:00901	THRUC H: Y: R:	80-1 90-999 500-999 27-466	2000/11/20 21/41/04 (30	OUT (80-1 00-000 102-100 27-44		OFF 1:
OTTHING				29,928			20,000		SW1 26
NGM. HESSAGE Dilotos Bessoo	(0012)	WHAT THE	THRUC H:	803 0.000 0.000	WHAT	THEORY No.	8>1 0.000 0.000		ME: 3
5: 0,000 1: 0,000 1: 0,000	(1000000)	E HI FM: DERRES H: DERRES G: DERRES		0.000 0.000 0.000	T B3 FM: descent II: necests II: necests		9.000 9.000 9.000		PRIC 1
WE CORNEY	33,9×:9W0	TO HERE, D	CALL	FROM 165			1000		NO SWILL
		1821-ST/e	DOX		317 0	ITP R-1	28 E		

3999 Sets Memory Holes:

Record the latest 3999 sets if processing holes, allow user to check the failure and then restart.

Visual parameter setting:

different wire diameters and types.

100 sets NC Program **Memory:**

Record the latest 100 sets NC programs, let the operator knows the processing whether be finished based on the board information.

- Multi-cavity threading

Monitoring Screen:

AWT Device

CHMER BUILT CNC CONTROLLER

/// W5F Controller Features

- All Software and Hardware are with full authorized. (Copyright Reserved by CHMER)
- ◆ IPC 586 Mother Board , Compatible Intel or similar CPU .
- ◆ DRAM 64M bytes
- ◆ High Capacity storage device CF card 128M bytes .
- ◆ Touch Screen or Optical Mouse Support (OPT)
- ◆ Synchronized 6th Axis (B Axis) Support (OPT) . Indexing and "Turn & Burn".
- All software functions and controller are fully compatible with FANUC™ post processor in CAM software.

M N O P Q R S T U V W [,

X Y Z 1,

Friendly User Interface and Operate Console.

Remote Monitoring WEB page to monitor Functions (PC)

■ Team-ViewerTM (A Pay Software, not included)

CHMER

 Remote Control (Through illegal purchase software "Team-viewer") for real-time monitoring & operate machine.

//// Software Functions

User-Friendly File Management

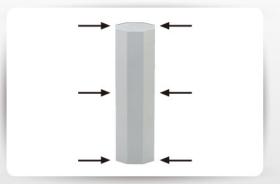
EDM Technology Database

3D Graphic Simulation + NC path Info.

NC Register

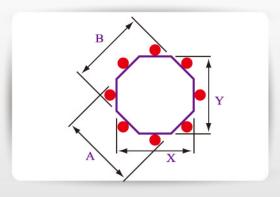
Graphic Manual Function

System Device Management+ Optimum system parameter


Functions

	N10000 151	1 100 HV E	CV [73; .0.0000 A3; R.0000	4: 56:58 -88-(780.81)	2912/82/13 17127158		
	SYSTEM	DEVICE IN	ORMATION				
DEVICE NAME	USE COUNT	TILLE COURL	CRESET SATES	18x 25x 58x	75× 100×1		
PERSIZING PLATE	8:00:00 8.00c	368 189 88	23147157			19:26	2012/02/1
PPER-LIMER QUILLE	1128157 8.37x	308:88:68	2889/89/14 21:85:57			is.et>	17136126
SEASONG OF LONES HEAD	1128157 8.37x	358:88:88	23897-99714 21:85:58			HE.	_
MARCING OF REAR HURE	1128157 8.37x	358188188	2889/89/14 21:85:58			CHEMIN	_
COMPOCITIVITY PROBE	221 361 26 6. 25x	358:88:88	28/5/12/23			VER US). 2.7	
ON RESIM	8:00:00 8:00x	72:60:60	2867/82/83 23128:54			CINEN	
WIT HEATER	8:81:18 13.98x	8: 18: 66	2888/88/23 86:86:57			els.	HEN, INTH
MFER FILTER	60:20:42 61.44x	144:00:00	2889/89/14 21:06:01			MAGES P	ATH
HEE	1876.n 9.28x	3.29800 1188/8.26nm	29879/89/14 21:86:81			DENGES P	HIS
L RESIST/SET (STATUS	U.TEMP/S		WOLTER!		U. DICHG.	THE 13	
90.0K/ 50.0K	OFF 0.0	C/22.0°180	H 0.0°C			AER ROS	
SVICE LIFE TIMES					ESSMEET 4)	18/5/81/8	
		-	100E 300 a	- BEEF &		BIT. WI	E
Cavatan Casvica I	HET A TET	THE SAMESSAN		NAME CONTINUE	F BOIT		

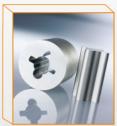
F MONE F SSWERN F F SSM. F 1 LINE 2 N.COSE 5 4 SKIN C **Advance Application** V MEH. F MEH. F MEH. F MEH. F MEH. F COMMER F MEH. F MEH. F MEH. F FEGER F DATE F DATE


//// Straightness Accuracy

Straightness

Workpiece: SKD-11 Thickness: 30 mm Wire diameter: Ø0.2mm No. of cut: 3 cuts

Accuracy: 2 µm



Measurement figure

Marked red color means the measured points.

Accuracy	X	Α	Υ	В	Error
Up	9.999	9.999	9.999	9.999	0μ
Mid.	9.997	9.999	9.999	9.999	2μ
Dn.	9.999	9.999	9.999	9.999	0μ
Error	0.002	0	0	0	

/// Sample Illustration

Job Material: SKD-11 Job Thickness: 30 mm Wire diameter: Ø0.20 mm Number Of Cut: 1+ 2 Skims Work Hour: 1 Hour 10 Mins Accuracy: 3µm

Surface Roughness: Ra 0.55~0.58µm

Job Material: SKD-11 Job Thickness [Punch]: 50 mm Job Thickness [Die]: 30 mm Wire diameter: Ø0.20 mm Number Of Cut: 1+ 2 Skims Work Hour: 4 Hours 00 Mins

Accuracy: 3µm

Surface Roughness: Ra 0.58~0.63µm

Job Material: SKD-11 Job Thickness: 25 mm Wire diameter: Ø0.20 mm Number Of Cut: 1+ 2 Skims Work Hour: 1 Hour 50 Mins Accuracy: ±3µm

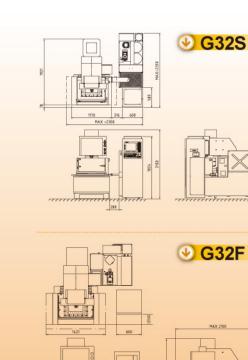
Surface Roughness: Ra 0.55~0.58µm

Job Material: SKD-11 Job Thickness[Punch]: 50mm Job Thickness[Die]: 20mm Number Of Cut: 1+2 Skims

Surface Roughness: Ra 0.58~0.63µm

Job Material: SKD-11 Job Thickness: 17 mm Wire diameter: Ø0.15 mm Number Of Cut: 1+ 2 Skims Work Hour: 1 Hour 50 Mins Accuracy: ±3µm

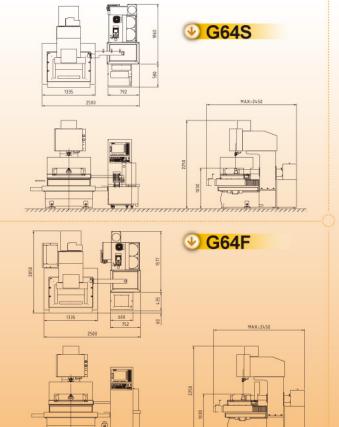
Surface Roughness: Ra 0.55~0.58µm

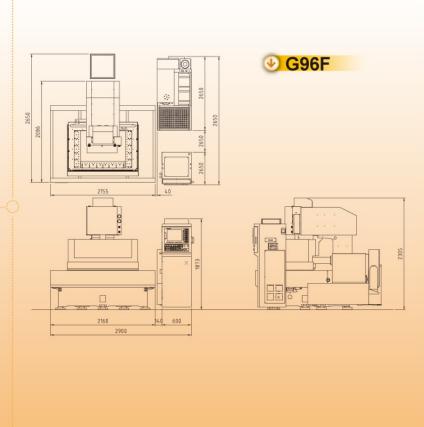


PCD formed milling cutters

Job Material: PCD Job Thickness: 2.5 mm Wire diameter: Ø0.20 mm Feed rate: 2.0 mm/min

G Series Floor Layout


9 G32S

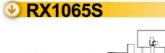


MACHINE SPECIFICATIONS

Machine Body Model	G32F/S	G43F/S	G53F/S	G64F/S	G96F
X , Y axis travel (mm)	360x250	400x300	500x300	600x400	900x600
U,V,Z axis travel (mm)	60x60x220	60x60x220	60x60x220	100x100x300	100x100x300
Max.size of working piece (WxDxH mm)	725x560x215	725x600x215	825x600x215	910x700x295	1300x950x295
Max. weight of working piece (kg)	300	500 / 350	550 / 400	600 / 450	1500
XY feed rate (mm/min)	Max. 800	Max. 800	Max. 800	Max. 800	Max. 800
Motor system (axis)	AC Servo Motor	AC Servo Motor	AC Servo Motor	AC Servo Motor	AC Servo Motor
Wire diameter range (mm)	Ø0.15~0.3 (Ø0.25)	Ø0.15~0.3 (Ø0.25)	Ø0.15~0.3 (Ø0.25)	Ø0.15~0.3 (Ø0.25)	Ø0.15~0.3 (Ø0.25)
Max.wire feed rate (mm/sec)	300	300	300	300	300
Wire tension (gf)	300~2500	300~2500	300~2500	300~2500	300~2500
Max. taper angle (°)	±14.5°/80 (wide-angled	±14.5°/80 (wide-angled	±14.5°/80 (wide-angled	±21°/100 (wide-angled	±21°/100 (wide-angled
workpiece thickness(mm)	nozzle, DA+DB=15mm)	nozzle, DA+DB=15mm)	nozzle, DA+DB=15mm)	nozzle, DA+DB=15mm)	nozzle, DA+DB=15mm)
Outside dimension (WxDxH mm)	2200x2100x2100 /	2200x2130x2130 /	2290x2130x2130 /	2500x2450x2250 /	2900x2650x2305
	2300x2300x2100	2200x2265x2130	2290x2270x2130	2500x2450x2250	29008205082505
N.W (including power and coolant system) (kg)	2300 / 2375	2575 / 2800	2800 / 3195	3200 / 3595	6300
Coolant tank system (L)	300/590	340 / 650	340 / 650	340 / 760	650

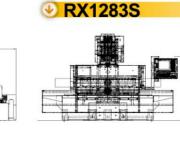
Machine Body Model	RX853F/S	RX1063F/S	RX1065F/S	RX1283F/S
X , Y axis travel (mm)	800x500	1000x600	1000x600	1200x800
U,V,Z axis travel (mm)	150x150x300	150x150x300	160x160x500	120x120x300
Max.size of working piece (WxDxH mm)	1210x800x295	1430x900x295	1240x900x495	1600x1100x295
Max. weight of working piece (kg)	2000/1000	3000/1500	5000/3000	6000/4000
XY feed rate (mm/min)	Max.800	Max.800	Max.800	Max.800
Motor system (axis)	AC Servo Motor	AC Servo Motor	AC Servo Motor	AC Servo Motor
Wire diameter range (mm)	Ø0.15~0.3(Ø0.25)	Ø0.15~0.3(Ø0.25)	Ø0.15~0.3(Ø0.25)	Ø0.15~0.3(Ø0.25)
Max.wire feed rate (mm/sec)	300	300	300	300
Wire tension (gf)	300-2500	300-2500	300-2500	300-2500
Max. taper angle (°)	±21°/140 (wide-angled	±21°/140 (wide-angled	±21°/180 (wide-angled	±21°/130 (wide-angled
workpiece thickness(mm)	nozzle, DA+DB=15mm)	nozzle, DA+DB=15mm)	nozzle, DA+DB=15mm)	nozzle, DA+DB=15mm)
Outside dimension (WxDxH mm)	2400x2800x2350 /	2700x3000x2200 /	3200x3600x2800 /	4250x4100x2300 /
	3150x3500x2350	4000x4000x2200	4000x3600x2800	4350x4100x2300
N.W (including power and coolant system) (kg)	5460/5535	6500/7100	7500/7600	14500/15000
Coolant tank system (L)	340/1370	650/2000	650/2400	760/3000

- Spefications subject to change based on R&D results without prior notice.
- Remark: In submerged condition, maximum height of work-piece recommended is Z stroke minus 45mm.


RX Series Floor Layout

W RX1063S RX1063F

STANDARD / OPTIONAL ACCESSORIES Standard Optional O None -SPECIFICATION AMOUNT ITEMS G32 G43 G53 G64 G96F RX853 F/S RX1063 RX1065 RX1283 ● / **S**-3 pcs 2 pcs Paper Filter _ _ _ _ _ _ 4 pcs _ • • _ _ • 6 pcs UPPER / LOWER Diamond Guides 0.26mm • • 2 pcs • • • UPPER / LOWER Flushing Nozzles • 2 pcs • **Energizing Carbides** • • 2 pcs Diamond Guide Remove Jig • • • • • • • 1 pc Ø0.25mmx5kgs • • • Brass Wire 1 roll Tools . • • • 1 set AC power • • Alignment Jig • • • • • • 1 pc Flushing • 3L Ion Exchange Resins • • _ • _ _ 6L • Submerged 12L Swinging panel 0 0 0 0 • • • 0 • 2-in-1 Transformer +AVR 0 0 0 0 0 0 0 0 0 Auto Data Recovery after Blackout • • • • • • • Auto Wire Threading (AWT) 0 0 0 0 0 0 0 0 0 30kgs Wire feeder 0 0 0 0 0 0 0 0 0 Wire chopper 30kgs 0 0 0 0 0 0 0 0 0 Z axis travel 400MM __ 0 0 0


Water chiller

DC Invert Chiller

Flushing

Submerged

•

_

•

0

•

0

•

_

•

0

_

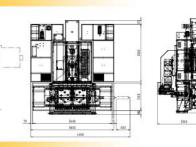
•

_

•

_

0


_

•

_

0

0

•

_

•

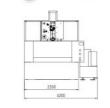
0

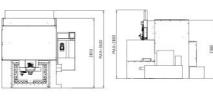
_

-

•

0


_


-

•

0

1T

2T

1T

2T

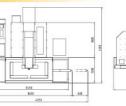
3T

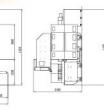
2T

1 set

1 set

1 set


1 set


1 set

1 set

RX1283F

